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b 1. INTRODUCTION

& .

b Linear regression models are widely used in statistical analysis of

i experimental and observational data. Usually the linearity of the model is
e . :
o merely an assumption and cannot be taken for granted. In some planned experi-
-’0‘.: ments, repeated measurements on the dependent variable Y can be taken while
': the independent variable X is held fixed. In such cases standard analysis-
A

b of-variance technique can be employed to generate a test for linearity. In
ij many applications, however, the independent variable is observed simultane-
;3 ously with Y. That is to say, X, as well as Y, is a random variable. Under
W such circumstance the usual method for testing linearity cannot apply.

f} . Hr this paper Qelsha11 study this problem in the large-sample context.
f‘ We prbpose a method to test the linearity hypothesis based on a grouping of
;3 the data. The critical value of test-statistic is determined so that the

_ g
o test has a prescribed lever of significance & asymptotically as the sample
'} size tends to infinity. The consistency of the test is established, and

>

- the asymptotic power is calculated when the distance (in some sense) between
li the true regression function and the space of linear functions tends to zero
g

g in some specific rate.
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2. ASSUMPTIONS OF THE MODEL

In this section we shall give a detailed account of our assumptions.
We shall adhere to these assumptions in the sequel.

A basic assumption is that the conditional distribution of Y given
X = x has a form (F(y - m(x)), i.e., P(Y < y[X = x) = F(y - m(x)), where
F is a fixed distribution function. We do not assume F to be known. Let
(ZI,YI), cees (zh,Yn) be iid. observations of (X,Y). Then, under this

assumption, we can give Yi a more convenient expression, as follows:

Yo =mX) +e, =1, ..., (1)

where €1s €55 ... Are iid. with common distribution function F, and
Xy eees Zﬁ, €s ..» € are mutually independent. Also, Ee; = 0. We
further assume that

1°. The moment generating function of € exists in some neighborhood
of zero.

2°. The variance 02 of e, (whose existence follows from 1°) is positive.
Denote by u the probability distribution of X. We assume that

P, ElF? <

4° u has no singular component, and if u has an absolute component
with density f, then for sufficiently small a > 0 there exists an open set
Ga’ such that
IGaA{x: f(x) > a}|

where |A| denotes the Lebesque measure of A, and & is symmetric differ-
ence. This condition is a rather weak one since it is satisfied by such f
whose discontinuity points all lie in a closed set with Lebesgue measure zero.

For brevity, in the sequel we shall use "model (1)" in the sense that

all of the above assumptions are met.
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3. CONSTRUCTION OF THE TEST

Choose two numbers € and €09 with the condition
0 < €] < €y < 1/3. (2)

Some further restrictions on the choice of €15 € will be needed, which

will be stated in Section 5.

-(1/3-62)/d d
Put zn =n . Decompose R™ into a set J; of supercube having
the form
{(x(l), cees x(d)) a.e_ < x(1) < (a,+1)2 , i=1, , d}, (3)
i“n i n
a; = 0, #1, +2, i =1, ..., d.
For J 6 J;, use #(J) to denote the number of elements in the set
I N, ..., ). write
2/3+e1
. * =
3: J e J*, #(3) > n b= Ugpe dpge oeeo Jncn}' (4)
Obviously,
1/3‘51
c,<n . (5)
Further, let
Jn.i n {ll’ ceey ln} = {ln"l(l)’ 1"1(2)' se ey ln'l(ni)}
We have by definition
(2/3)+e1
n,>n » =1, i, (6)
We shall write Y .(j) and e .(j) for Y, and e , when X5 (3) =X, .

Denote by Xni the arithmetic mean of Xni(j), =1, .00y n. Similarly

VALY VN R N G LR T e N, P I L R
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we define Yni and €ni A
If the null hypothesis HO: B,
2
m(x) = a + B'x (7) k
is true, we have ;;
nicetXBte s i=1, .., ¢ (8) i
_ _ 2 : by
where Eeni = 0. Var e =0 /ni,.and €1 ~+e» encn are independent. i.
Applying weighted least squares method to this model with weight matrix v
w(n) = d1ag(n1, Nos wees ncn) f
one obtains the weighted residual sum of squares as if
Ca
= ! - [ Y Y -l-l :::‘
B350 = Y m)Y(n) = Y(m¥(n)X (n)(l(n)“(n)&n)) a¥tm)'n)  (9)
where f&
l(n) = (lnla--oplncn) ’ Y(n) = ( nic..-aYncn) s e(n) = (enl,...,encn) ::
Xni = Xpg - X 'ni = Vni " Yae i ey - €n P=1, *» Cn 7
s
_ E? E? E? E
X = n.X /N, Y = n.Y /N , e = .e /N f
N 42y i=nitn nooLgy nooLYy "i%ni -
b\-
and g,
(10) 3
N =¢, +n, + +n_ .
n ‘17 ™ c, N
s
The definition of RSS, is meaningful even when (7) is false. In case =
that (7) is true, we have o
"\
%)
S () = €l m2m) 2 m ¥ E ) (Zin¥ () Kim¥m ey (1) :;:%
hY

i‘.‘~ \“.' 5.-3 .h\l‘.-i‘i.;zp .i :it\- X .\ .\AAL-
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5 RSSq tends to be large when the null hypothesis H0 is not true, and

this suggests a test for HO‘ Reject H0 when

| d
.a '.

2
RSSn/cn > C (12)

24500

and accept H0 when (12) does nut hold. cﬁ is a suitable estimate of 02,

to be defined in Section 5. In order to determine C in (12), we must study

A the asymptotic distribution of the statistic RSSn/cﬁ under HO. This will

be done in the following two sections.
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4. ASYMPTOTIC DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES

The purpose of this section is tc prove the following:

THEOREM 1. Let P* = P*(X,, Xé, ..., be the conditional distribution -
given {X;, X,, ...}. Under model (1) and when H, is true, there exists
random variable £ whose conditional distribution given {Xl, XZ’ ...} is

xZ _4» such that with probability one we have
n

2 p
RSS/c" - £, — 0, as no-> =, (13)

Proof: First we proceed to show that
l(n)W(n)X(n)/n e COV(Z), a.s., as n -+ «, (14)

For this purpose, denote the atoms of X by 315 855 -ens and put P; = P

(X = ai) >0, 1=1,2,.... Givenn> 0, find N so that py , + py ., *
.<n. Find b> 0 small enough, such that
J fdx < n. (15)
{x=f{x)<b}
According to condition 4°, there exist an open set G, such that
|Ga{x: f(x) > b}| = 0.
Choose a bounded closed set F0 < G, so that J fdx < n. Denote by si the
G-F
distance between FO and the boundary of G, then ei > 0.

By the inequality of Bennett (1962), we have

P(1#(3)/n - u(d)] > €) < 2exp(- ne?/(2 + ¢€)) (16)

v

P(#(3)/n - u(J)

|v

eu(J)) < 2exp(- cnu(J)) (17)

where ¢ > 0, and ¢ > 0 is a constant depending solely on e. Define two

. ._'-“..-‘.‘-'.."._-'-P";_-‘._"‘-."\'5‘\‘&’_“-{\" Y A N N o O T S S R A e
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subsets of J;

x
"

1 {J: J e J;, a.

; € J for some i < N}

X
i

2 {J: J e J;, J FO £ ¢}

and an event

2/3+¢
E ={#(J) > n , for every J € H,UH,}.
n - 1 2 1/3-¢
Since the number of J's contained in HIU H2 is of the order 0(n 2) and
-1/3+¢
u(J) > bn for J e H)NH, and n sufficiently large, it is easy to
prove by using (16) that
1/3
P(E ) >1-0(e™" ) (18)
where ¢ does not depend on n.
Now define the event
-1/3+e1/2
Fp = minGu(T )i =1, ..oy c e }

We are going to prove that for any given positive integer k, it is true

that

P(F) = 0(n ™). (19)

For this purpose, define D_ = {(x(l?, cees x(d)): ]x(i)l < n(k+1)/2

i=1, ..., d}. By condition 4°, it is readily shown

P(X; €D, i =1, ...,n)>1- 0o(n”").

Define
-1/3+¢,/2
Hy = {J: J e %, JND # ¢, u(d) <n

(k+1)d

.
There are at most n elements in H3. Using (16), for n sufficiently

large, we have

-k 2/3+€1
P(F) < Cn™0 + ) eH3P(#(J) > )
-k '1/3+51/2
A Cn ZJGH P(!#(J)/n - U(J)l >N
1/3
ek 4 (e ) < o(n7h (20)
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which proves (19)
For each t € Rd, denote by t(u) the u-th coordinate of t. MWrite

EX(u) =m,. For each J € J;, choose a point tJ € J, and if J is one of

Iys «oos Incn’ then choose t; = X .. Put g =J* -{I .:1 = 1, ....c )y
we have
[of [of
n nn
(u) i w(u) (u)
IR CUN IO S COME ) Y R I s B D SRR AL E))
j=p N N u Jeg* Y jzp M Jed* Y
n n
( s (u) (u)
<17 W) - mlw)] +|2.(—‘-u(1 ))7“|+|z -t u(9)]
Jegx Y j=i\ " ni‘/=ni Jed Y
n n
&+ +L (21)
12T bse

Since E[|X|| < =, Ly > 0as n~>=. As for Ly, when event E_occurs, we have

. c
”JeJnJ - FO {aN+1, vens aN+2} and

1im sup|) . t(u)u(J)I < E(IX(“)lI(FCU{a s Ayins <o) (22)
e Cded ) 0 Y aN+1* ON+2
e s as -~ C .
By definition of N and F,, we have P(X € FoUlap,ys ayens ...}) < 3n. Letting
n > 0 small enough, the right hand side of (22) can be made small enough.
This, combining with (18), shows that
lim L, = 0, a.s. (23)
N
Finally we turn to L,. When event F_ occurs, we have w(I ;) >n

Also, by (17) we have

P{l#(lni)/" - “(Ini)l > Eu(lni) for at least one i such that

 ata gt Al i aia gha Bt igt Uy 400 Ve 2%y BV

-1/3+51/2

-1/3+€1/2 -1/3+€1/2 -2
(I4) 2 } < ne2exp(- cnn ) = 0(n "), (24)
N R B N 0 AR T, N O 0, R 4 S I A R N PG PR K M N B RN AN v
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This, combining with (19) (choosing k = 2 in (19), shows that with proba-
bility one |n /n - u(I ) < eu(I ), i=1, ..., c,» for n sufficiently

large. In this event we have
o

n
Ly < 5izllzgg)|u(1ni) f-EZJeJ;ItSU)l“(J) > SEIX(U)I-

Therefore

1im L2 = 0, a.s.

and we have proved that

c
non,
u)

1 Y -
Z - 1 oo u=l, ., d, as. (25)

]
3

Similar arguments shows that

n n,
Tim
o =]

X(U)X(V) = E(X (U/'R(V)),

n ZLni =ni u,v =1, ..., d, a.s. (26)

Now (14) follows from (25), (26).
According to an important theorem in the theory of strong approximation
proved by Kom1ds and others (1975), one can find a random variable

7.~ N(O.ozlni), Zni’ eess N independent, and

ni nc,
P(le .-2 .| > (log n )2/n.) < K exp(-1(log n 13y, 1 =1 ¢ (27)
ni n'i _ 'i '| —_— g -i ’ gesey n

where K > 0, » > 0 are constants not depending on n, i. Put

Voi Z €~ Ly TS Liooese
~ 1 “n . 1 n
Voi = Vni N; 1Zl"1vni' Zm s Zn1 - N; 1Zln1zm" =1, Ch
( ) ( seeeoVne A Z(n) i} (Zn1’ ’chn).

-1<

e = Lim¥m)i(n) - ZEn)”(n)3<n)(Xin)”‘(n)z(n)) X imZ(n) (28)
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Then RSSn defined by (19) can be written as
RSSy = &0 + Vi (m)V(n) * 2V{n)¥(n)E(n)
] Y Y Y 'l-i
= VX ey KX n)) ()Y (n)

SR TIUTIRY (Y0 cJV TRy 09 Ry FARUTRY 208

>

g, + Qp + 20, - 0 - 20, (29)

From the well-known normal theory and the assumptions made on model (1),
it follows that the conditional distribution of ¢ given (X, ..., X}
is Xg -d (so the unconditional distribution of £, 18 also XE _d). Now we
procegd to estimate Q1 ;—04. First take Ql' Considering (6), we see that

the event

n
- 2
Tn = igl{leni B Znil 2 (log ni) Iy}

has a probabi]ity)O(n'z). Hence, with probability one, we can assert that

v

ni| < (log "1)2/“1’ i-1, ..., ¢C (30)

n

for n sufficiently 1arge. Now, in case (30) is true.
<, .
z n1 ni = iz "ivni = iZ (Tog ni) /ni'

Considering (5) and (6), we have (again in case (30) is trie)

1/3-¢ -2/3-¢ -1/3-2¢
Q < n Y1og n)*n Yo Y1og m)* (31)
which proves that
lim Q; = a.s. (32)
n-ro
e S T e S G S O A 9
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Next come to 02‘ By Schwartz inequality,

n
2 ' 2

Q=0 Z( ) (n) (n) <0 Zl i“ni (33)
But ch n. Zz - x2 Hence Zc" n 22 /c. =0 (1), as n - ». From this
i=1 "i%ni ¢, i=1 "i%ni’“n pti/s as . om ,

(5), and (31), we see that

P*

Q, — 0, asn~»> . (34)

In order to deal with 03, we shall in the following use the symbol kn

to denote a quantity depending on Xl’ oo Xn’ with the property that
Sup Kn < = with probability one. k may assume different values in each
of its appearance. We also use the symbol I to denote an identity matrix

with appropriate order. Under these conventions, we have by (14) that
(X3 W, %, )7L < k. I/n (35)
=(n)"(n)=(n)’ ="n

for n sufficiently large. Therefore,

\ 1/2 1/2 - 1/2 1/2
B = Vi ()X () Kal/ME ¥ ()Y (n)

L 5 5owl/2
<k (n)in ‘nll] Xai ™)V n) -

By this, and using again (14), we have

cowl/2y 1/2
O < KV (¥ (m¥(m)Vm) = K (36)

with probability one for n sufficiently large. By (32), we get
lim Q3 = 0, a.s. (37)
N0

Finally we come to Q4. By Schwartz inequality,

-

2 ] Y v -l_l
Q =2 Q3Z(n)w(n)z(n)(lkn)w(n)i(n)) l(n)w(n)z(n)‘ (38)
O N O O N N N N N RN R RN NN IR N R R NN IR SR
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Arguing as in the case of 03, we have :?
2 ¥ ) & (i) FiMim ) < KnllnMimPy (39 e
with probability one for n sufficiently large. From (36), (38), (39), we X

have (again with probability one for n sufficiently large)
Q% < k.Q.Z} \W, +2Z (40)
4 = "n*1%(n)"(n)"(n)"

In the process of dealing with 02, we have shown that the right hand side

of (40) tends to zero in probability as n - «. Hence, with probability one,

Q P 0, as n > =, (41)

From (29), (32), (34), (37), (41), and the observation made on £, We

T, o,

finally reach (13). Theorem 1 is proved.
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5. ESTIMATION OF THE VARIANCE OF ERROR

In this section we shall give ar estimate of the variance 02. For

)

our purpose, we need an estimator '; which tends to 02 with a rate as

-1/2
0(cn ).
We shall consider separately the two cases that 1°, d < 3, 2°,d > 3.
For the first case, we chrose €1» € satisfying (2) and
€,y < (991 +1)/12 (42)
and define
2 N 2
o, = .Z .Z (Yni\J) - Yni) /(Nn - Cn) (43)
i=l j=1
For tne second case, we choose €1 €3» such that
0<e <1/3, 2(1-e)d>i-2 (44)
1 ? 3 [3 2
'(1'53)/d d -~
Define g, =N . Decompose R~ into a set Jn of supercubes having

the form (3), but 2 in (3) is changed to q,- For each J € 3n, write the

elements in {51, cevs Zn} NJ as {jﬂd(l), cees an(nd)}. The observations
of Y corresponding to these X's is written as fYnJ(l). cees YnJ(nJ)}.
Finally we define
2 nJ . 2
%n = Laej Ly=1(Vngld) = ¥ng)*/lge] (ng - 1) (45)

n
=T J :
where YnJ = Zj=lYnJ(J)/nJ'
THEOREM 2. Under model (1) and suppose that Ho is true, then with
probability 1

/E'(cﬁ - oz) P 0, asn -+ o, (46)

M2 A YRS
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Proof. We shall only give the details for the case d < 3, as the

case d > 3 can be dealt with in an entirely similar wav. Put b .(j) =

(E%i(j) B zni)'s' then |bni(j)} f.“aW|5“2n- From (18), we have
n, N
. 2 .
| PR EREACNOR e )2 (a7)
| 2 .. i .
| + jZlbni(J) + 2 jzlbni(J)(eni(J) - eni)'

Put N; = Nn - Cn; In view of (5), in order to prove (46), it is enough

to verify the following assertions (all with probability one).

1/6-¢,/2 % M4
o 1 v P _ 2 . 2
1%, n T/N 0, where T = ] ] (e ;(3) - o%).
i=l j=1
. 1/6-¢,/2°n o
]
2°. n Z nge /N — 0,
i=1
c. n,
1/6-¢,/2 "n i *
.00 U1 1edim o
i=1 j=1
cC. n, .
1/6-€,/2 °n i o
0 p* _ 1 . . t -J
4°. s, —> 0, where S =n .Z 'Z bni(J)(eni(J) - e )N ]
i=1 j=1 d
. N . . .
Under model (1), T is a sum of Nn iid. random variables with zero
n 2/3+¢, 1 23+
mean and finite variance v. By (6), we have N' > n -1>5n . .
Hence (with probability one)
1/6-51/2 . 1/2+3e1/2 4 -381 a
P*(|n Tn/Nél > ¢) < P*(lTnI > N ) < ;7vn - 0.
This proves 1°, For 2°, notice that E(nieniz) = 02, hence a
1/6-¢,/20 1/6-¢,/2 -5¢,/2 :
* ] ' - .
E*(n izlnieni/Nn) <n c /N, < 2n 0 X
N
W
!
(.
\|

L e gl L




.......

This proves 1°. For 2°, notice that E(niegi) = 02, hence
1/6-e1/2cn ) 1/6-¢,/2 -5e,/1
* '
E*(n 1Zln1em/N ) <n /N, <2n + 0

and 2° follows. 3° is proved by noticing that N'IN =+ 1, and

1/6-¢,/2%n M N 1/6-¢,/2
oo T T RE N < g dlisl % !
i=]l j=1 n
N 12/3-2¢ o) + (1/6-¢,/2)
- ¢ dllsit - !

under the condition 0 < €y < 1/3, 0 < €y < (Qe1 +1)/12 and d < 3, we
have - (2/3 - 252)/d + (1/6 - 51/2) < 0. Therefore, the right hand side

tends to zero as n = o,

(J)(e ;(3) - e .) canbe

) o n
Finally we come to 4°. Since the sum Z =1 73 =1 %ni ni

written in a form Zi 12 ‘ld (j)e ;(3) with ldni(j)l f-[bni(j)[' it follows that
1/3-¢
1

Z

Z an(J)G /N'

Var*(S_) <n
n -—
1 j=1

It is easy to see that the right hand side is less than a constant 95 which

does not depend on 71, ees X s and g > 0asn-~=Also, E*(Sn) =
Therefore,

2 _ 2
E*S = Var*s .+ (E*(S ))
29,0,

from which 4° follows, and Theorem 2 is proved.
A more tedious argument allows us to prove that

lim /(o2 - 0%) = 0, a.s.
N> n
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6. A LARGE SAMPLE DETERMINATION OF C IN TEST (12)

We are now in a position to prove the following theorem, which gives

a large sample determination of C in test (12).

THEOREM 3. Under model (1) and suppose that the null hypothesis Ho

is true, the distribution of the statistic

T* 4 2 _ -
$0 frss s 2 - Ale )

converges to the standard normal N(0,1) as n » =,

Proof., From Theorem 1 it follows that the conditional distribution

of Tn & xéﬁésn/oz - /ékcn - d) given {X;, XZ’ ...} tends to N(0,1), with
2 2 2
< o |

-0

n , we have

probability one. Since |on - o

72
- lo - a_| jéRSS lo¢ - o
- n n'n
|Tn - TX| = J2Rssn o < T . (48)

By Theorem 1, with probability one RSS /c = Op*(l)' Therefore, from (48)
-~ * P*
and Theorem 2, we have Tn - Tn —> 0, with probability one. Hence we have

proved that with probability one, the conditional distribution of T; given

{X;» X5, ...} tends to N(0,1), as n » =, and the same holds true for the

unconditional distribution of T;. Theorem 3 is proved.

From Theorem 3 it follows that if we choose

C= (2 =4y +u_ %2 (49)

0

a 2

in (12), where u_is defined by J 07X /zdx//ZF = 1-a, then the test
0 -

is asymptotically similar with size ag.

ity
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7. CONSISTENCY OF THE TEST

Denote by Qn(F) the power of the test defined by (12) and (49), where
F is the joint distribution of (X,Y). The following theorem shows that

this test is consistent over a wide class of alternatives.

THEOREM 4. Suppose that the following conditions are satisfied:

1°, E[E)% <=, cOV(X) > 0, EY <,

2°. The distribution of‘X has no singular component.

3°. The closure Il of the set A of all atoms of X possesses Lebesgue
measure zero,

4°. The closure Kz of all discontinuity points of m(x) = E(Y]|X = X)
possesses lLebesgue measure zero.

5°. P(Y < y|X = x) depends only on y - m(x).

6°. There exists no linear function a + B'x such that

P(m(X) = o +8'X) = 1.

Then, denoting the distribution of (X,Y) by F, we have

lim Q (F) = 1. (50)

N>
Proof. First choose d+2 points t1s .evs ty,os such that the points

(t1, m(t)))s oees (00 m(ty,))) (51)

do not lie on a common hyperplane in Rd+1.

If X possesses no absolute
continuous component, then, by conditions 1° and 6°, we can choose such
points tl, ceus t&+2 from the atom set A, If X has an absolute continuous
component with density f, then, according to conditions 1°, 3°, 4°, 6°, we

d . .
can choose t,, ..., t  , from the set R" - (Illjiz). With the additional

R L Lot L o o,



mwmmwnmmm TP N RPN O™ I AW Y O T Y R RN

19

property that there exists two constants hl > 0, h2 > 0, such that for any
I = {(x(l), cees x(d)): by < x(1) <b; +h,i= 1, ..., d} with h ¢ (O’hl)’
we have

d

f fdx > h,h". (52)
I

2

For large n, we can find d+2 distinct supercubes Jnl’ cees Jn,d+2 in

J; (see (3)), such that ti € J 5s i=1, ..., d+2. Denote the elements of
Xps eees Xn}fldni by Zni(J), j=1, ..., n,. In the same way as we did

in Section 2, we define Yni(j)’ X Y

Xaio Yoi Fit a hyperplane

- '
y=oa, + an

to the d+2 points (Xﬁi’ Y .),i=1, ..., d+#2, by the weighted least squares

ni
method with weights Nis eevs Nyyoe The weighted residual sum of squares is

= d';"z (X2
Ry = 21’=1"i (Yni T % T BrXni

)2,

For definiteness, we assume that the points tl, cees td+2 are chosen from
the set Rd - (AR,UA,). In this case, from (52) and the fact that & =

-(1/3-¢,)d 1772 n
n . With probability one we have

2/3+ez

n; > hyn /2, i=1, ..., d¥2 (53)
for n sufficiently large.

Given §, > 0, we can find n, such that for n > n,

sup{m(x): xeJ .} - inf(m(x): xed ;) < 8;/2, 1 =1, o0y d+2. (54)

8
2

o

Use again P* = P*(X,, X,, ...) the conditional probability distribution

given X,, X,, ... . By (53), (54), it is easy to see that
=1’ =2

N Yr PP

* -2,.-12 -2/3-E2 . 5
X
ﬂg
h
2
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7 ' :
%; with probability one for n sufficiently large.

Since the points (51) do not lie simultaneously on any hyperplane,

5
Ly _
3: and since lni > ti’ i=1, ..., d+2, as n > », it follows that there

8
3 -
o exists constant 5, > 0 not depending on n and (li,Yi). i=1,2, ...,

$ such that

2 )
2: sup{lm(ti) -a, - Bnlml i=1, ..., d+2} > 8,
L,
> for n sufficiently large. Choose 8, = 52/2 in (54), Then if the inequal-
‘:; ities [Y . - m(t.)] < 6; all hold true, we shall have

N

N R > 6% min{ ) (56)
~ n 2 % MM0p, Nd+2

;S for n sufficiently large. Summing up all the arguments above, we reach
;; the following conclusion:

o Tim PR > n?/3) = 1, (57)
*\ o

oS

.‘\
:§ Obviously, we have RSS, > Rn' Hence by (57)

g

w lim P(RsS_ > n?/3) - 1. (58)
o o "

% 2

o Now consider o defined by (45). The equality (47) still holds if

n,
. Y oo X ()Y o . R - .

,3 we redefine b .(j§) = m(X .(§)) - m ., withm . Zj=1m(1ni(3))/ni. We
o have
-~
: P om, < f 0 b

) b N, = (X . (J)I/N < m-(X:)/N (59)
N 11\]1m i=1 j=1 —m i=1 vt
K™
K It can be shown that there exists constant q > 0, such that with probabil-
1)

‘ ity one we have

-

.;: Nn >qn (60)
‘.

.a.
' l'. I'. "‘n"‘l’- l‘l -, Aol !“."l..i M nJ‘\.la » " " N “" - ’ -‘ "‘\Mﬁ.ﬂ&i, e J‘ '. ""' \ir:‘,::i—-_.'r_. f ‘h.
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for n suff1c1ent1y large (see the end of this sect1on) From (59), (60),
using the strong law of large numbers, we get

o n.
n

limsup § ] b2 (DN < g lEmAX) < qTlE(P) <o, as. (61
nse izl j=1

Employing the method of handling Sn in the proof of Theorem 2, we get

C n C

P*(I Z Z b (J)(e ( ) - e -)[/N > ¢) < E-ZN'Z 2 f‘ Z b
J 1 n1 ni n — —_ n ;& 1 J 1
2220 W 5 2220 2
_€ Nn g X Zm (lni(j)) :E N- [o} Zm (x.) -PO, a.s. (62)
i=1 j=1 n j=1 |

Finally, we have

c n,
n i
p*

Z ! (e . (3) - e ) /N, — 0. (63)
=1 j=1

Combining (61)-(63), we see that there exists constant M < =, such that

lim p(oﬁ <M) =1, (64)

n->o
From (58), (64), it follows that

Tim P(RSS /o2 > n?/3w71)

N>

= 1. (65)

But by (5), we have
C < (/2(cn - d) + u_ )2 < 8¢ < gnl/3 < m-1,2/3

0
for n sufficiently large. This means
. 2 _
1im P(RSSn/on >C) =1

N0

b S
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which is no other than (50), and the theorem is proved.

Proof of (60). 1f X has at least one atom, then clearly (60) holds.
Otherwise we choose a sufficiently large such that

J fax > 172, 1=y D ca e, L e,
I

1/3-¢
I contains (2a)n elements of J;. Put
-1 -d ‘(1/3'€2)
Hy = (J: Jed*, Jel, u(y) > 4 "(2a) "n }
Evidently we have
sen H(9) > 174, (66)
n
d 1/3-¢
Using (16), and noticing that H, has at most (2a)"n members, we
obtain
-1 -d ‘(1/3'52)
P({#(J)/n - u(J)] > 8 7(2a) " "n , for at least one J € Hn)
1/3-¢ 1/3+2¢
< (2a)dn 22exp(- cn 2) = O(n_z) (67)

where ¢ > 0 does not depend on n. From (67) we see that, with probability

one, we have

d ‘(1/3'52)

12a)79 , for all J e H_ (68)

|#(3)/n - w(9)| < 87

for n sufficiently large. But when (68) holds we shall have

1 g ~(1/3-€))
No2 1 #0) 20l Q) - 877(2a) " n ]
JeH n

3—”2JeHn%‘“J) > n/8

on account of the fact that €, > £ and (66). This shows (60) holds with

q=1/8.
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8. ASYMPTOTIC POWER OF THE TEST

Suppose that (X,Y(l)), (X,Y(Z)), ... is a sequence of alternatives,
where m(")(x) 4 E(Y(n)lz = x) approaches some linear function o + 8'x as

|
' the sample size n increases. Specifically we assume that
| )y \
mx) = o+ g'x + my(x)/g (69)

where g -+ » as n + =, We are interested in finding such g_ for which
n n

Qn(F(")) tends to some limit greater than the size o and smaller than

P ot o

one (F(") is the distribution of (X,Y(n))). X
R

THEOREM 5. Suppose that (XI’YI)’ cees (Xh,Yn) are iid. samples of A
(X,Y(n)), where Y. = m(")(zi) teg,i=1, ..., m(")(x) is defined by )
:

(69) and Xi, e;, i =1, ..., nsatisfy the conditions specified in model by
(1). Also, assume that EMSCX) < =, and ¢
\

Vim g /(/h ¢4y < nle (0,9). (70) 3

o M n o,

Define 7
_.

2 -

h i —_ =.2 ~

L = u - S-min N - oAt 71 A

t " 7 wip EE) - @ - 8 o

Then we have 0
M

(n)y . L (°-t?r2 N

Yim Q (FM) = — f e dt. (72) o

nooo 1 Vom ‘g o

Proof. ps the detailed proof is tedious, we give only a sketch of ?

the main points of the proof, Y
1. Since the linear hypothesis H0 is not assumed to be true, the y

_ _ o

residual sum of squares RSSn (9) cannot be reduced to (11). Under this N
. B LY

circumstance, instead of (27), we have to use a strong approximation to Yni’ g‘
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2 2 .
POIY,, - Z*ni[ > (log n,) /n;) < K expl-A(Tog n)%), i=1,...,¢

* 2 .
where Zm ~ N(un.i: g /n.i)o with
Upj =@+ 8 ln' * zJ =1 0 ))/(nign)‘
= * - - i i -
2. Put Zni Zni a - B 1n1 It is easy to verify that the expres
sion (29) still holds true with Z.; so defined.
3. We have to verify that (32), (34), (37) and (41) still holds true
in the present case. For Q;» nothing has been changed and (31) is true.
For 02, notice that Zzn)w(n)l(n)/oz obeys a non-central x2 distribution

with degree of freedom <, and non-central parameter
c

n.
2 2 30 < . 2
§c=9° 1 | Im(X .(3))/n,
n n o4 <;=1 0'~ni i
It is easily seen that as n + =, Eﬁ = ng [Em (X) + o(1)]. Since we have
ng;2 = 0(/3;) in view of (70), by (5), we have

1/6-51/2

E(Zin)w(n)Z(N)) = O(Cn) = 0(n ) (73)

and (34) follows from (31) and (73). Q; and Q, can be dealt with in the
same manner.
4. Given X, %,, ... , the conditional disiribution of g /o° is

x2 o0 where

C
2 . -2) ¢ M2 O “r T vy o
Sy = "9y izl'ﬁ'vni - 1.ﬁl'ﬁ'vnilm' ; l'ﬁ—(lni'l")(lni'ln) i21_7'Vni5m'

where

3

H e~

n.
P 1 = X

From (14) and (70), it is easily seen

i

' 1 ‘ 3 - N R
ML n.o'. ¥ .u".- .\‘.l.\.l {3 M, () ., Al Tl 5 oy iy sy,

......
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8% = Ve Var(my(R)) - E(my(T) - )X 1V LELm (%) - m)E) + o(1) 10 ]

/e tmin E(my(X) - o - 8K + o(1)3n%. :
a,B )
Given {X 2, ...}; the conditional distribution of gn/o2 is the same as
the sum of iid. variables (n, + § //E')z, i=1, ..., ¢c_, where n n
i n"“n n 1° 0 Cp
are iid., n - N(0,1). The central limit theorem can be applied to this

case. which gives
2 2
g,/0" - (c +6)

J2cn + 465

— N(0,1). (75)

v v w_ v

5. Define o© as in (45). We have to verify that (46) still holds
true in the present case. Starting from (47), in which bni(j) is redefined

as

bpi(3) = (X ;(3) - X )'e + g”lu L (4)

g (3) = mg(E, (30) - T3h g (B (520 /m,) »

it is easily seen that the first and third term in the right hand side of

(47) can be handled in the same way as before, and it suffices to verify

that ;
n

]21 lebn1 /n = o(Vc ). (76)

Considering (46), (75) reduces to

c

n
2N
9, 121 leun, /n = olVc) (77)

n




C
n

. n 2,— ‘2_
121 lem (X,;(3))/n < iél'“o(li)/" > E(m(X), a.s.

Further, by (5) and (70), we have

-2 1 -5/6
9y = ? /—; =n

for n sufficiently large. This proves (77).

6. From (45) and (75), we have

2 2
g /o - {c + &)

/ 2
2c + 48,
as n + =, under the conditional distribution given {Xi, XZ’ e.e}.  From

(49), (74), we have

(/E(C 2 )/2-(c +<S)
Tim = 9.

e /2¢ ot 4sn§

This leads to (72), concluding the proof of the theorem.

The statistical meaning of the quantity & is clear, since

m1g E[m (X) -a - B X] measures the distance of mo(X) to linearity in

the MSE sense. As this distance increases, % decreases, and the asymptotic
power of the test (right hand side of (72)) increases.

The theorem indicates that, roughly speaking, our test has a dis-
crimination power for those Y, for which the distance (in the sense of

MSE) of E(Y|X = x) to the linear function space is not smaller than

e - 1/3-¢
f 0(n 1/2 ]/4) Under quite general conditions, we can prove that Ch Cn 2

1/2 1/4) i O(n'5/12'52/4

and 0(n” In principle, €, can be chosen arbitrarily

Wb near 1/3. So the order for possible discrimination can be made arbitrarily

. ‘\ ) e . ."'.‘ ' - ..' \. q. ‘ 'N. -N'\ .\.\.-...'-'\'.~ » '\'\.\- - \\ %‘%‘ '.-\‘ ‘\
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X near 0(n
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i with a finite number of atoms.
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but this order cannot be reached, unless X is purely atomic
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